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Renewable energy generation (REG) has continued to grow strongly and resulted
in the lower profitability of conventional generation. Meanwhile, the
indeterminacy of REG will also lead to electricity balancing challenges and
more volatile and less-predictable physical flows in the power grid. In this
case, a capacity market is essential to motivate new investments and,
therefore, ensure supply adequacy. Considering the low-carbon transition goal
and the requirements of the reliability of the power system, this paper develops a
reliability-constrained capacity market framework in which the reliability criterion
rather than the capacity supply–demand equilibrium is taken into account. The
ramping constraints, devices’ random failures, and REG uncertainties are
comprehensively considered in the capacity requirement determination and
allocation. First, a comprehensive capacity market mechanism coordinated
with multi-objective regulations is proposed to compensate the capacity
providers and encourage the renewable energy transition. Then, a novel
capacity market model is proposed to clear the market with reliability
constraints. Moreover, to reduce the computational burden caused by the
explicit consideration of reliability constraints, several techniques are applied
including the root-event-based state screening technique and the adaptive
Kriging metamodel. A modified IEEE-RTS-79 case is studied to illustrate the
benefits of the proposed reliability-constrained capacity market model.
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1 Introduction

In recent decades, there has been a global trend toward the deregulation of electricity
markets. The primary objective of this deregulation is to stimulate competition among
various electricity generators, ultimately enhancing market efficiency and reducing costs. A
noteworthy development in major markets worldwide is the increasing prominence of
renewable energy generation (REG) (Mitra and Nguyen, 2022). In 2018, 26.2% of global
energy consumption was attributed to renewable energies, and it is projected to surge to 45%
by 2040. The growth in renewable capacity is particularly driven by intermittent sources,
specifically wind and solar photovoltaics. Notably, these sources exhibit a unique
characteristic wherein their total cost is predominantly determined by capital costs with
marginal costs nearing 0 (Yang et al., 2020). In contrast, conventional generation,
particularly thermal power generation, struggles to compete with the cost dynamics of
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REG sources. Consequently, the load factors and profitability of
conventional generators are on a decline. Despite this, the
intermittent nature of REG prevents it from entirely replacing
the conventional generation (Ssengonzi et al., 2022). The
reliability and security of power supply are still dependent on
conventional generations.

Due to the deteriorating profit margins, there has been a decline
in investor enthusiasm for new conventional generation
investments. Concurrently, with the persistent surge in demand
for reliable capacity, the system generation adequacy is now under
risk. Various capacity mechanisms have been deliberated to ensure
the sufficiency of power supply (Petitet et al., 2017; Kirschen and
Strbac, 2018). The current regulatory discourse predominantly
revolves around capacity markets, in which resources are
compensated for their readiness to meet peak electricity demand,
with payments determined through auction processes (Khezr and
Nepal, 2021). The discussion on the capacity market design has
spanned within the academic literature for many years. For example,
Cramton and Stoft (2005) elaborated the design principles for
ensuring adequate capacity while mitigating market power
concerns. Chen et al. (2020) proposed a novel capacity market
mechanism coordinated with multi-objective regulations, and Shang
et al. (2021) further extended the model to take into consideration
the network topology and spot market operation. Addressing the
question of compensating existing generations upon the capacity
market, Cramton et al. (2013) argued that all generations should
receive compensation, aligning with the principles of an energy-only
market.

Nowadays, the capacity market is adopted by several major
independent system operators (ISOs) in the United States, such as
PJM, New York ISO, and ISO-New England, to ensure an adequate
medium- and long-term security of generation supply by
remunerating generators for their capacity availability (Bushnell
et al., 2017; PJM, 2023a; PJM, 2023b). The energy crisis of 2022 has
increased the re-thinking of the energy supply security and the need
to increase decarbonization, sparking discussions on the need to
redesign the EU’s electricity market. The reform of the electricity
market was first presented by the European Commission in March
2023. The proposal of the market reform has supported the
investments in firm and low-carbon capacity. In order to “ensure
long-term security of supply and provide investor certainty,” it
argues for the further assessment of capacity mechanisms
(i.e., remuneration for power plants to secure long-term supply)
to ensure investments in firm renewable and low-carbon capacity
(Widuto, 2023). One of the key elements of capacity market design is
the determination and allocation of the required capacity. The
existing capacity market designs in ISOs consider the
determination and allocation separately (Hobbs et al., 2007).
First, they determine the required capacity based on the variable
resource requirement (VRR) curve that reflects the value of load
(Bhagwat et al., 2016). Then, the capacity allocation is achieved
through the intersection between the VRR curve and the supply
curve, while the supply curve of the generation capacity is based on
offered generation capacities.

Although this mechanism could maintain generation capacity
adequacy at peak, it could not guarantee the system reliability targets
(Fang et al., 2018). System reliability is not only determined by the
available capacity but also influenced by the ramping capability of

power systems, which is necessary to follow REG fluctuation (Currie
et al., 2017). Additionally, as those models usually concern system-
wide balancing between demand and supply, they could not be fit for
larger regional markets with severe internal peak mismatch and
transmission congestion. Moreover, as surging REG integration is
reshaping the generation mix and it is difficult to precisely predict
the required capacity to meet the reliability criterion, the modeling
of REG volatility and uncertainty is simplified in practices.

Some researchers have made efforts to improve the capacity
market model. Fang et al. (2021) introduced a novel capacity market
model integrating flexibility requirements to address ramping needs
arising from load, wind, and solar power fluctuations. Mertens et al.
(2021) quantified the capacity credit of energy storage in capacity
markets. Cañas-Carretón and Carrión (2020) considered the reserve
provision by wind power plants in the capacity market. Sun et al.
(2022) reviewed the capacity markets that incorporate the demand
response resources. Some capacity expansion models can be
modified to search the capacity market equilibrium. For example,
Dehghan et al. (2016) and Costa et al. (2021) considered constraints
on reliability indexes via Monte Carlo simulation and Benders
decomposition with feasibility cuts. Rashidaee et al. (2018)
considered the loss of load probability (LOLP) constraint in the
generation expansion planning model.

As discussed above, there is a growing acceptance that the
reliability criteria should be concerned in capacity market
clearing. Several capacity market models with reliability-related
constraints or objective functions have been proposed by Lu
et al. (2019). However, introducing the reliability-related
constraints significantly increases the complexity of optimization
modeling since the reliability evaluation is based on the state analysis
of numerous system states. Thus, these models usually neglect or
simplify ramping constraints, random failures of the generation and
transmission devices, and renewable energy uncertainty.

This paper introduces a capacity market framework tailored for
power systems characterized by high proportions of REG, aligning
seamlessly with the fundamental objectives of the electrical
system—affordability, reliability, and sustainability. To extend the
existing literature, this paper establishes demand and supply models
covering the whole period of the target year and incorporates REG
development goals as a key constraint into the market clearing model,
enabling it to not only identify marginal capacity costs and ensure
capacity supply but also facilitate the low-carbon transformation of the
power system. In thismanner, the capacitymarket clearingmodel could
not only identify the marginal capacity cost and ensure the capacity
supply but also promote the low-carbon transformation of the power
system. The primary contribution of this paper is listed as follows:

• First, a comprehensive capacity market mechanism
coordinated with multi-objective regulations is proposed in
this paper. The proposed market can satisfy the total capacity
requirements and involves additional energy structure
constraints which can promote energy transition.

• Second, a novel capacity market model is proposed that seeks
the optimal allocation of capacity requirements among the
providers while meeting the reliability criterion. Moreover, the
uncertainties of REGs, loads, the random outages of
generation, and transmission devices are considered to
evaluate the reliability.
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• Third, to reduce the computational burden caused by the
explicit consideration of reliability constraints in the capacity
market model, the root-event-based state screening technique
and Kriging metamodel are applied for reducing the number
of system states and simplifying the system state analysis.

The remainder of this paper is organized as follows. Section 2
introduces the framework of the proposed capacity market with an
emphasis on the operational process. Section 3 introduces the
modeling of devices’ reliability models and formations of REG
and load curves. Section 4 formulates the proposed capacity
market model and proposes the techniques for the efficient
solution of the model. Case studies and conclusion are provided
in Section 5; Section 6, respectively.

2 Design of the capacity market
mechanism

The proposed capacity market involves multi-round auctions.
The base residual auction will be conducted several years before the
delivery year (target year), followed by several additional capacity
auctions as appropriate. Different types of capacity resources can
participate in the capacity market, including conventional thermal
units, hydropower plants, nuclear units, wind power plants, and PV
units, while other resources such as energy storage and demand
response can be allowed to participate in the market as required.
Each resource bids into the auction at its total cost of investment and
operational costs, with the consideration of the expected income in
the wholesale energy market. The process of the additional auctions
is similar to that of the base residual auction. After the capacity
resources in different regions submit their offering curves, the

capacity market model is performed to clear the market to
determine the commitment of each resource. In addition, the
“clearing price” is set by the most expensive resource needed to
meet the demand.

The specific process of the capacity market is illustrated in
Figure 1, which can be divided into the following main steps:

Step 1. Before the opening of the market, the ISO, or the
transmission system operator (TSO), will forecast the system load
of the target year. The ISO along with the regulators will also
determine the other security- and policy-related constraints that
provide the boundaries of the market operation.

Step 2. After the opening of the market, the ISO will release
information about system load, energy regulation targets,
reliability reserve requirements, system network constraints, etc.
Then, the market participants will submit their technical and
marketing information to the ISO, including the types and
locations of their existing capacity resources and offering curves
of the existing and to-be-built capacity resources.

Step 3. According to the information obtained from market
participants, combined with the system load curves, energy
development constraints, system operation constraints, etc., the
market is cleared. The commitment of each capacity resource
and the clearing price are simultaneously determined.

Step 4. The ISO feedback on the results of market clearing to each
market participant to complete the base residual auction.

Step 5. Before the delivery of capacity, the ISO shall timely organize
several additional auctions that are basically the same as Step 2 to
Step 4, and the auction results shall be updated and released on a
rolling basis.

Step 6. During the capacity delivery period, the ISO shall evaluate
the effectiveness of the commitment results within the contract
period (single year, several years or longer, etc.) and compensate the
capacity resources according to the clearing price afterward.

3 Modeling of demand and supply

3.1 Reliability models of the electricity
generation units

It is assumed that each generation unit has two possible states,
including the working and failure states. Under such circumstances,
the availability and unavailability of a device can be calculated as
follows (Hu et al., 2021):

A � μ

λ + μ
� m

m + r
, (1)

U � FOR� 1−p � λ

λ + μ
� r

m + r
, (2)

where λ denotes the expected failure rate, which is the frequency
with which an engineered system or component fails, expressed in
failures per unit of time; µ demotes the expected repair rate, which is

FIGURE 1
Flowchart of the capacity market process.
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the rate with which a repair action is performed and is expressed in
terms of the number of repair actions performed per hour; m
denotes mean time to failure (MTTF), m = 1/λ; and r denotes
the mean time to repair (MTTR), 1/r = µ.

Hence, the available generation capacity of the whole power
system can be expressed as the following multi-state system (MSS)
model:

G � ∏Ni

i�1
Ai · z

∑Ni

i�1
Pi + U1 ·∏Ni

i�2
Ai · z

∑Ni

i�2
Pi + A1 · U2 ·∏Ni

i�3
Ai · z

P1+∑Ni

i�3
Pi

+/ +∏Ni

i�1
Ui · z0, (3)

where i denotes the index of the generation units, Ni denotes the
number of the units, and z is the symbol of z-transform.

The above MSS model describes the mapping function between
the specific realization of available generation capacity and the
corresponding probability. Taking the first term of Eq. 3 as an

example, it denotes the probability of a no-failure scenario is ∏Ni

i�1
Ai

and the available generation capacity in this scenario equals to the

total installed capacity of the generation units which are ∑Ni

i�1
Pi.

3.2 Formation of the REG supply curve

The power output of REG, such as wind power and solar PV,
varies over time as the meteorological condition changes. Therefore,
it is necessary to capture the fluctuation characteristics of renewable
generation for evaluating the power system capacity requirements.
To determine the extent to which fluctuating renewable generation
can ensure grid reliability, many grid planners have embraced a
concept called effective load-carrying capability (ELCC). The ELCC
of a generator is defined as the amount by which the system’s loads
can increase when the generator is added to the system while
maintaining the same system reliability.

However, the ELCC of renewable generation is affected by the
scenario of the electricity generation mix. For example, the ELCC of
renewable generation is usually larger in power systems with
sufficient flexible generating units. Hence, the ELCC method is
not precise for capacity market models when much of additional
generating units should be planned.

This paper adopts the power time series model to represent the
fluctuation characteristics of renewable generation. The Gaussians
mixture model–hidden Markov model (GMM–HMM) method is
used to mine the statistical characteristics of REG power output from
historical output data and then uses a simulation method to obtain
output time series with similar patterns. It should be noted that such a
method does not pursue point-by-point accuracy, but focuses on the
extraction and reconstruction of statistical characteristics.

There are three main steps involved in the GMM–HMM
method for generating the REG power output time series,
including construction, learning, and prediction (Li et al., 2021).

3.2.1 Step 1—construction of the HMM
In this study, the observation sequence is the time series of REG

power, whereas the state sequence is the non-observable factors
affecting REG power, such as climate conditions. Figure 2 illustrates
the generation of a hypothetical REG power scenario based on the

HMM, where the natural number 1, ..., N expresses the state
sequence. At time t1, the state variable 2 is selected at random.
Under the climatic conditions corresponding to state variable 2, the
REG power follows the probability distribution N(μ2,∑2), and the
observed value O1 of REG power at time t1 is generated through
random sampling with the probability distribution N(μ2,∑2). The
state variable is transferred to state N at time t2 based on the
transition probability a2N. Similarly, in state N, REG power
conforms to the probability distribution N(μN,∑N), and O2 can
be obtained by sampling randomly from the probability distribution
N(μN,∑N). The REG power time series is obtained by analogy.

Consequently, the hidden Markov model is uniquely
determined by four parameters, λ � (π, A,μ,Σ). Here, π denotes
the probability of selecting different states at time t1, A is the
probability of mutual transition between state variables, and μ,Σ
characterize the REG power distribution in each state.

3.2.2 Step 2—learning of the HMM
REG power is an easily observable variable in the real world.

Learning the HMM is the process of calculating the HMM
parameters that maximize the probability of the observed variable
sequence using historical data of the observed variables. It is
symbolized by the maximization of P(O|λ).

3.2.3 Step 3—prediction of the HMM
Using the HMM parameters and the Viterbi algorithm, the state

sequence of the REG power prediction sequence with the highest
probability among all other state sequences is determined. This
calculation is known as HMM learning and can be regarded as
maximizing P(I|O, λ).

3.3 Modeling of the load demand

Based on the historical data, the load demand can be forecasted.
Moreover, the capacity market model accommodates a per-unitized
daily peak load model with uncertainty introduced on a weekly basis
via normal distributions; that is, for an entire delivery year,
52 normal distributions are developed for modeling the
uncertainty related to future load demand.

The coverage of the capacity market can be a regional scope
(including many regions and provinces) or the whole country. The
forecasting methods for the target annual load curve of the system
have been well developed, and only one of the deterministic methods
is given as follows:

(1) Based on the historical load of each province (region) in recent
years, the typical daily and monthly load characteristic curves of
the target year can be obtained through the analysis and
forecast.

(2) By analyzing and forecasting the maximum load of each
province (region) in the target year, the target annual load
curve of each province (region) can be obtained by
combining the aforementioned forecasting load
characteristic curves.

(3) The target annual load curves of multiple provinces (regions)
can be accumulated at different points to obtain the target
annual load curves of the regional scope or the whole country.
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Shang et al. (2021) provided one of the methods used in the
process of developing system load curves.

The load level of the system is related to complex factors, such as
economic development, and it can be adjusted and corrected on a
rolling basis according to the actual situation before the year of
capacity delivery, which can be responded to by additional
incremental auctions.

For simplicity, the load demand is expressed as the following
normal distribution:

D w( ) � N uD w( ), σD w( )( ), (4)
where uD(w) and σD(w) denote the mean vaule and variance of the
normal distribution for week w.

3.4 Reliability index and the evaluation

There are different indices that can measure the reliability of
power systems, such as loss of load expectation (LOLE) and
expected energy not supplied (EENS). The loss of load event
occurs when the available generation capacity is below the
demand, as shown in Figure 3. Hence, LOLE is represented by
the expected number of hours per year that the power system
cannot meet its demand, which is expressed in Eq. 5. EENS
represents the energy which is expected not to be supplied due
to insufficient resources to meet demand needs during a given time
period, which can be calculated as the product of LOLE and the
averaged load shedding (Yang et al., 2020).

LOLE � ∑52
w�1

E G<D w( )( ). (5)

4 Optimization model of the capacity
market

The proposed capacity market model is illustrated in Figure 4.
The two types of input parameters are required.

The technical data include the reliability parameters of generation
and transmission devices, REG power output time series, and daily load
curves. The economic parameters mainly include the offer curves of the
existing capacity resources and to-be-built capacity resources which are
made up of price-capacity pairs.

FIGURE 2
REG power output simulation using the HMM.

FIGURE 3
Illustration of the loss of load expectation.
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4.1 Formulation of the capacity market
model

The capacity model is formulated as an optimization problem as
follows:

min Cy � ∑
i∈Ωi

Bi · Pi,y + ∑
j∈Ωj

Bj · Ij,y · Pj,y + ∑
k∈Ωk

Bk · Ik,y · Pk,y

+ COy, (6)
COy � ∑

t∈Φy

CO Pi,t, Pj,t, Pk,t( ). (7)

With the following constraints, we obtained

Pi,t ≤Pavi
i,y � Pi,y

Pj,t ≤Pavi
j,y � Pj,y · Ij,y

Pk,t ≤Pavi
k,y � Pk,y · Ik,y

⎧⎪⎪⎨⎪⎪⎩ where t ∈ Φy, (8)

1 + R min( ) × ∑
d∈Ωd

Ld,y
max ≤ ∑

i∈Ωi

Pavi
i,y + ∑

j∈Ωj

Pavi
j,y + ∑

k∈Ωk

Pavi
k,y, (9)

∑
k∈Ωk

Pk,y · Ik,y ≥PREG
min, (10)

∑
k∈Ωk

Pavi
k / ∑

d∈Ωd

Ld
max⎛⎝ ⎞⎠ 1 + R min( )≥Mk

min. (11)

The objective in Eq. 6 represents the sum of the capacity offer
and operation costs, where i, j, and k denote the index of existing
generation units, the to-be-built conventional generating units,
and the to-be-built REG; Pi,y, Pj,y, and Pk,y are the winning
capacity of the generating units; Ij,y and Ik,y are the binary
parameters that indicate whether or not the unit is expected
to be built; Pi,t, Pj,t, andPk,t denote the power output of
generating units at period t, and Φy is the set of all the
periods for the targeted year y; and COy denotes the operation
cost of the target year y which is a polynomial function of the

power output of the generating units Pi,t, Pj,t, and Pk,t, as shown
in Eq. 7.

Equation 8 limits the power output of generating units. Equation
9 guarantees the capacity adequacy of the system where Ld,y max is
the maximal demand of load d at the target year y and R min is the
capacity adequacy threshold. Equations 10, 11 denote the REG
expansion goals, where PREG

min denotes the requirement of REG
installed capacity andMk

min denotes the requirement of the share of
REG in the electricity generation.

The reliability constraint can be formulated based on either
LOLE or EENS.

The reliability constraint based on LOLE is expressed as
follows:

LOLEy � ∑52
w�1

E Gy <Dy w( )( )≤ LOLEy, (12)

where Gy denotes the distribution of available generation capacity
for year y and Dy(w) denotes the distribution of load demand for
week w of year y.

4.2 Reforming of reliability constraints

As we can see from Eq. 12, the LOLE index of each year is
dependent on the distributions of available generation capacity and
load demand. Load demand distributions are forecasted based on
historical data, which are classified into exogenous uncertainty. The
distributions of available generation capacity, on the contrary, are
affected by the generation expansion decisions. For example, more
newly built generation capacity results in larger mean values and
variances of available generation capacity. Without the loss of
generality, Gy is denoted as a normal distribution, the mean value
and variance of which are related to the generation expansion decisions.

Gy � N uGy, σGy( ), (13)

FIGURE 4
Illustration of the capacity market model.
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where

uGy � fu ∑
i∈Ωi

Pavi
i,y , ∑

k∈Ωk

Pavi
k,y

⎛⎝ ⎞⎠,

σGy � fσ ∑
i∈Ωi

Pavi
i,y , ∑

k∈Ωk

Pavi
k,y

⎛⎝ ⎞⎠.

(14)

Under such circumstance, E(Gy <Dy(w)) in Eq. 12 can be
rewritten as follows:

E Gy <Dy w( )( ) � E N uGy, σGy( )<N uD w( ), σD w( )( )( )
� E N uGy − uD w( ), σGy − σD w( )( )< 0( ).

(15)
According to the probability distribution function of normal

distributions, Eq. 15 is equal to

E Gy <Dy w( )( ) � 1���
2π

√
σGy − σD w( )( )∫

0

−∞
e

−
z− uGy−uD w( )( )[ ]2
2 σGy−σD w( )( )2

dz. (16)

Evidently, Eq. 16 is difficult to be incorporated into the
optimization model. Given that, the Kriging model is applied to
obtain the approximate function of Eq. 16. The Kriging model
is an interpolation method based on statistical theory. It
consists of a regression model and a non-parametric
stochastic process. For the set of sample points X and the

set of objective functions Y, the Kriging model can be
expressed as follows:

Y � fTβ+z X( ), (17)
where f is the basis function matrix and β is the coefficient matrix.
Since the choice of the basis function has little effect on the
accuracy of the metamodel, the quadratic function is selected as
the basis function. The basic function is used to denote the
approximated relationship between the value of
E(Gy <Dy(w)) and the decision variables ∑

i∈Ωi

Pavi
i,y , ∑

k∈Ωk

Pavi
k,y,

that is,

E Gy <Dy w( )( ) � fQ ∑
i∈Ωi

Pavi
i,y , ∑

k∈Ωk

Pavi
k,y

⎛⎝ ⎞⎠. (18)

The main steps of the aforementioned Kriging model
construction are shown in Figure 5.

5 Case studies

5.1 Test system and assumptions

The modified IEEE-RTS-79 is studied in a 12-year planning
horizon to show the effectiveness of the proposed model. The
capacity market is held 3 years in advance of the first target/

FIGURE 5
Flowchart of the Kriging model construction.
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delivery year (T1). Target years T2–T10 are the nine successive years
followed by T1. The power system topology and reliability
parameters can be found in (P.M. Subcommittee, 1979). The
details concerning the annual peak load and load growth are
reported by Jong-Bae et al. (2000). Other criteria and system-
related values are shown in the work of Rashidaee, et al. (2018).

There are six types of generating units considered, and the data
are provided in Table 1. It is assumed that there are already
20 generating units, including one oil power unit, three gas
power plants, four coal power plants, one nuclear unit, eight
wind power plants, and four solar PV units.

In reality, what price a power plant bids into the capacity market
varies quite dramatically. A near-retirement power plant could
actually bid at a very low position and a new power plant could
have a much higher bid. For the sake of convenience, the bid prices
of the power plants are set in a unified manner, which can be
expressed as follows:

Price �Investment Cost/Life Span × Compensation Factor

× RandomCoefficient.

The compensation factors of the nuclear power and REG plants
that have near-zero operation costs are set as 0.25, while the
compensation factors of other plants are set as 0.5. The random
coefficients of all the plants are set between [0.9 and 1.1] to represent
the potential uncertainties related to strategic behaviors.

5.2 Simulation results of the base case

In the base case, the operator holds an auction that provides the
available capacity for target year T1 with constraints that the
proportion of REG exceeds 10%, LOLE is below 2.4 h/y, and
EENS is below 70000 MWh/y. The proposed capacity market
model is performed to clear the market. The commitment of the
power plants is summarized in Table 2.

Here, N-3 contingencies are considered to evaluate the system
reliability. There are 18,352 original N-3 contingencies in total.
With the root-event-based contingency screening technique,
574 critical contingencies are identified. Therefore, the
computation efficiency of the capacity market model is
significantly improved. To verify the accuracy of the contingency
screening technique, the Monte Carlo simulation-based method is
applied to evaluate system reliability given the capacity market
clearing results. The value of EENS is calculated as 68,732.08 MWh/
y, which is less than 70000 MWh/y. In other words, the capacity
market model successfully guarantees the expected reliability
criterion for the target year. It mostly confirms the efficiency of
the proposed contingency screening technique.

TABLE 1 Candidate to-be-built capacity resources (generating units).

Type Unit capacity (MW) For (%) Operating cost($/kWh) Investment cost($/Kw)

Oil 200 7.0 0.021 812.5

Gas 450 10.0 0.035 500.0

Coal 500 9.5 0.014 1,062.5

Nuc 1,000 9.0 0.004 1,625.0

Wind 50 10.0 0 1,300.0

Solar 50 10.0 0 950

TABLE 2 Capacity allocation among the existing and newly built units for T1.

Type Oil Gas Coal Nuc Wind Solar

Existing 200 1,200 3,000 4,000 350 200

New 0 1800 1,000 2000 500 350

Total 200 30,000 4,000 5,000 850 550

FIGURE 6
Commitments of different types of power plants (newly built).
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5.3 Sensitivity analysis of REG development
goals

In this section, different REG development goals are considered to
test its influence on the capacity market clearing. Three scenarios are
modeled, including the 10% REG scenario (share of REG in the
electricity generation, calculated as in Eq. 8, should be no less than
10%), 20% REG scenario, and 25% REG scenario. Moreover, the
auctions are held every year for a decade that covers the target years
T1–T10. As shown in Figure 6, a more ambitious REG development
goal results in a significantly increased installed capacity of REG plants.
In the 10% REG scenario, the accumulative capacity of REG plants
during the decade is 3450 MW. It increases to 7200MW for the 20%
REG scenario, which is 109%more than that of the 10% REG scenario.
The accumulative capacity further increases to 8650MW. In response
to this change, the share of flexible power plants, mainly referring to gas
power plants, also increases. In the 10% and 25% REG scenarios, the
shares of gas power plants in the non-REG plants are 38.6% and 56.4%,
respectively. The reason behind this is simple: the proposed capacity
market model considers the ramping constraints into account, and
therefore, the flexible power plants are favored in the commitment,
particularly in the case of large-scale REG. On the contrary, the share of
nuclear power plants decreases along with the growing REG capacity

since the nuclear power plants cannot provide the necessary flexibility to
accommodate the fluctuating REG.

Figure 7A depicts the capacity market clearing price and the cost
per MWh of the electricity supply. The clearing prices are between
30 and 40$/Wh/day for all scenarios. Generally speaking, the
capacity price is relatively lower in the scenario with more REG
plants. REG power plants have near-zero operation costs and
consequently make higher profits in the energy market. It allows
them to bid into the capacity market at lower prices. The integration
of cheaper REG plants drives down capacity prices.

Figure 7B shows the total cost to provide 1MWh of electricity in
different scenarios. Notably, the investment-related cost and operational
cost perMWh of electricity supply are 12.35$ and 14.83$, respectively, in
the 10% REG scenario. In the 25% REG scenario, the investment-related
cost increases to 15.99$, while the operational cost decreases to 13.01$.
REG is not as reliable as the conventional power plants. A larger installed
capacity is required with a high proportion of REG. Therefore, the
investment-related cost is increased as a result. The lower operational
cost in the 25% REG scenario is due to the zero-fuel cost of REG. The
total costs per MWh of the electricity supply in the 10% REG scenario,
20% REG scenario, and 25% REG scenario are 27.18$, 28.47$, and
29.00$, respectively. It is concluded that a higher share of REG comes
with a price. However, it is very likely to be accepted considering the
environmental benefits of REG.

5.4 Sensitivity analysis of reliability
requirements

In this section, the reliability indices are no longer regarded as a
constraint in the capacity market model. On the contrary, EENS is
multiplied by the value of lost load (VOLL) and added to the objective
function. In other words, there is no more a strict constraint that
LOLE and EENS should not exceed the thresholds. Instead, the
capacity market model seeks the equilibrium between the
investment costs of power plants and the load-shedding risk. Here,

FIGURE 8
Power system reliability indices in different scenarios.

FIGURE 7
(A) Average capacity price in different scenarios. (B) Cost per
MWh of electricity in different scenarios.
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different levels of VOLL are considered. The benchmark of VOLL is
set as 17,500$/MWh. A lower level of VOLL (denoted by VOLL−) is
set as 0.75 times the benchmark value, while a higher level of VOLL
(denoted by VOLL+) is set as 1.25 times the benchmark value.

The reliability indices, including LOLE and EENS, are
calculated for different scenarios, which are shown in
Figure 8. With the benchmark values of VOLL, the EENS in
the 10% REG scenario, 20% REG scenario, and 25% REG scenario
is 71,841.4 MWh, 88,163.8 MWh, and 98,235.9 MWh,
respectively. The LOLE in the three scenarios is 1.40 h/y,
1.65 h/y, and 2.22 h/y, respectively. It can be concluded that
system reliability becomes worse in the scenario with a higher
proportion of REG. In the 25% REG scenario, the unreliable REG
power output increases the load-shedding risk, and it requires
additional cost to reduce the risk compared with the 10% REG
scenario. Therefore, the tolerance for the ever-greater risk is
witnessed in the 25% REG scenario.

The other observation is that enhancing VOLL can
remarkably improve the system reliability. A larger value of
VOLL means a higher priority on avoiding load shedding.
Increasing the value of VOLL by 25%, the EENS in the 10%
REG scenario, 20% REG scenario, and 25% REG scenario
becomes 57,247.8 MWh, 67,790.8 MWh, and 74,541.4 MWh,
respectively, while the LOLE is 1.16 h/y, 1.34 h/y, and 1.91 h/y,
respectively. Generally, there is a 20%–25% reduction of EENS
and a 16%–20% reduction of LOLE in VOLL+ cases compared
with the benchmark. Likewise, there is an obvious increase in
both EENS and LOLE indices in VOLL− cases, where the VOLL is
set lower than the benchmark.

6 Conclusion

With the aim of promoting the growth of REG and guaranteeing
supply adequacy, this paper proposes a reliability-constrained
capacity market model. The impacts of devices’ random failures
and REG uncertainties on the system reliability are fully considered.
The reliability-constrained capacity market model is formulated as a
two-level mixed integer linear programming (MILP) problem.
Considering the large number of events that occur, the developed
MILP model requires significant computing work to obtain precise
results. Hence, a series of techniques are proposed to reduce the
computational complexity of the capacity market model.

Simulation results demonstrate the necessity of incorporating
reliability constraints into the capacitymarketmodel. It can effectively

restrict the risk of load shedding. The integration of more REG
increases the requirements for flexible generating units, such as gas
power plants. Moreover, a higher proportion of REG induces
increased capacity-related costs while reducing operating costs.

We consider two future research directions. First, the capacity
market model should take into consideration demand response and
other resources that can provide alternative generation capacity.
Second, the other methods should be investigated to further
accelerate the solution of the capacity market model. In this
manner, the proposed capacity market model can be applied to
large-scale systems.
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